نوع مقاله : مقاله علمی و پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بوعلی‌سینا، همدان، ایران

10.22034/jprd.2025.64848.1164

چکیده

تخریب ساختمان‌های مسکونی یکی از عوامل اصلی تولید ضایعات ساختمانی است که تأثیرات قابل توجهی بر محیط‌زیست دارد و سهم قابل توجهی از کل ضایعات ساختمانی در بر می‌گیرد. در این راستا، شناسایی و تحلیل عوامل مؤثر بر تصمیمات مالکان در خصوص تخریب ساختمان‌ها می‌تواند به بهبود تخمین ضایعات ساختمانی و در گام فراتر در مدیریت ضایعات ساختمانی مفید باشد. با بررسی مطالعات پیشین می‌توان دریافت که متغیرهای پنهان و آشکار متعددی در ترجیحات مالکان مبنی بر اقدام به تخریب یا عدم تخریب ساختمان دخیل است. در این پژوهش سعی بر این است تا عواملی که مالکان را به تخریب ساختمان‌های مسکونی سوق می‌دهد، شناسایی و تحلیل شود. هدف اصلی این پژوهش، شناسایی عوامل مؤثر در تصمیم‌گیری مالکان برای تخریب ساختمان‌های مسکونی است. برای این منظور، از رگرسیون خطی چندگانه (MLR) استفاده شده و داده‌های مربوط به ترجیحات مالکان از طریق پرسش‌نامه‌های جمع‌آوری شده است. داده‌ها در نرم‌افزار آماری SPSS مورد تحلیل قرار گرفتند تا ارتباطات میان عوامل مختلف با ترجیحات مالکان شناسایی شوند. نتایج نشان داد که عواملی نظیر بافت منطقه ملک، میانگین ارزش منطقه ملک، متراژ ملک، سن بنا، عرض‌گذر اصلاحی و تعداد طبقات موجود ملک می‌توانند تاثیر مستقیم را در تصمیم مالکان مبنی بر تخریب ساختمان خود القا کنند، و همه این عوامل شناسایی‌شده به غیر از عامل تعداد طبقات موجود ملک، در سطح معناداری 0.0001 بر ترجیحات مالکان در خصوص تخریب ساختمان‌ها موثر هستند. به‌طور خاص، سن بنا و نوع بافت منطقه بیشترین تأثیر را در تصمیمات مالکان به تخریب داشته‌اند.

تازه های تحقیق

مطالعه حاضر با هدف شناسایی عوامل مؤثر بر تصمیم‌گیری مالکان در خصوص تخریب ساختمان‌های مسکونی در منطقه ۲ کلان‌شهر تبریز انجام شد. این پژوهش با استفاده از رویکردی علمی و مبتنی بر طراحی آزمایش و تحلیل رگرسیون خطی چندگانه (MLR) به بررسی نقش متغیرهای مختلف بر ترجیحات مالکان پرداخته است. از جمله متغیرهای بررسی‌شده می‌توان به بافت منطقه ملک، میانگین ارزش منطقه‌ای ملک، متراژ ملک، سن بنا، عرض‌گذر اصلاحی و تعداد طبقات اشاره کرد. از یافته‌های کلیدی پژوهش می‌توان به موارد ذیل اشاره نمود:

  • سن بنا و نوع بافت منطقه مهم‌ترین متغیرهای تأثیرگذار بر تصمیم مالکان برای تخریب ساختمان هستند. این متغیرها تأثیری معنادار بر فرآیند تصمیم‌گیری دارند و می‌توانند به‌عنوان شاخص‌های کلیدی در مطالعات آینده مورد استفاده قرار گیرند.
  • عوامل دیگری مانند میانگین ارزش منطقه‌ای ملک، متراژ ملک، و عرض‌گذر اصلاحی نیز در این تصمیم‌گیری نقش دارند، اما تأثیر آن‌ها در مقایسه با سن بنا و نوع بافت منطقه کمتر است.
  • تعداد طبقات ساختمان برخلاف انتظار، تأثیر معناداری بر تصمیم مالکان نداشت، که این یافته نیازمند بررسی بیشتر در پژوهش‌های آینده است.

یکی از دستاوردهای مهم این پژوهش، بهره‌گیری از طراحی آزمایش برای کاهش تعداد ترکیب‌های بررسی‌شده (از 64 به 16) بود که ضمن حفظ دقت تحلیل، کارایی و قابلیت اجرایی پژوهش را افزایش داد. این رویکرد می‌تواند در پژوهش‌های مشابه به‌عنوان یک روش مؤثر مورد استفاده قرار گیرد.

از لحاظ کاربردی بودن پژوهش، یافته‌های این پژوهش می‌تواند به‌طور مستقیم به برنامه‌ریزی و سیاست‌گذاری شهری کمک کند. به‌طور خاص:

  • شناسایی عوامل مؤثر بر تصمیم‌گیری مالکان، ابزاری برای پیش‌بینی دقیق‌تر حجم ضایعات ساختمانی فراهم می‌کند. این پیش‌بینی می‌تواند برای بهینه‌سازی مدیریت ضایعات، تخصیص منابع، و کاهش اثرات زیست‌محیطی مفید باشد.
  • نتایج این مطالعه می‌تواند به شناسایی ساختمان‌های مستعد تخریب کمک کند و از طریق تخمین دقیق‌تر حجم ضایعات ساختمانی، راهکاری عملی برای کاهش هزینه‌های اقتصادی و زیست‌محیطی ارائه دهد.
  • مدیران شهری و سازمان‌های مرتبط می‌توانند از این نتایج برای تدوین استراتژی‌های موثرتر در بازسازی شهری و توسعه پایدار استفاده کنند.

از پیشنهادها برای پژوهش‌های آتی می‌توان موارد ذیل اشاره نمود:

  • گسترش این مطالعه به سایر مناطق شهری ایران و بررسی تأثیر متغیرهای فرهنگی، اجتماعی، و اقتصادی بر تصمیم‌گیری مالکان، می‌تواند به افزایش تعمیم‌پذیری نتایج کمک کند.
  • ارزیابی تأثیر سیاست‌های دولتی، مانند مشوق‌های اقتصادی یا محدودیت‌های قانونی، بر تصمیم مالکان برای تخریب یا نوسازی ساختمان‌ها می‌تواند بینش‌های جدیدی برای مدیریت شهری ارائه دهد.
  • ترکیب یافته‌های این پژوهش با داده‌های مرتبط با ضایعات ساختمانی، به‌ویژه نرخ تولید ضایعات در انواع تخریب‌ها، می‌تواند به بهبود مدل‌های پیش‌بینی حجم ضایعات ساختمانی کمک کند.
  • شناسایی متغیر‌های پنهان در تخریب ساختمان‌ها به همراه متغیر‌های آشکار و ارزیابی و مقایسه این متغیرها با نتایج پژوهش حاضر.
  • شناسایی عوامل مؤثر در ترمیم و مرمت ساختمان‌ها از نظر مالکان

در یک جمع‌بندی کلی می‌توان گفت که پژوهش حاضر سعی بر این بوده است تا با تمرکز بر شناسایی عوامل مؤثر بر تصمیم‌گیری مالکان در تخریب ساختمان‌های مسکونی، گامی مهم در درک بهتر روابط بین متغیرهای تأثیرگذار بر این فرآیند و بهینه‌سازی مدیریت ضایعات ساختمانی برداشته شود. از نتایج کلیدی می‌توان به اهمیت متغیرهای سن بنا، نوع بافت منطقه و ارزش منطقه‌ای ملک اشاره کرد که هرکدام نقش مهمی در ترجیحات مالکان ایفا می‌کنند. مطالعه نشان داد که تصمیم‌گیری برای تخریب ساختمان‌ها یک فرایند پیچیده و چندبعدی است. به‌ویژه، نتایج حاکی از آن است که ساختمان‌های قدیمی‌تر، واقع در مناطقی با ارزش بالاتر یا با بافت فرسوده، بیشترین احتمال تخریب را دارند. این نتایج نشان‌دهنده ضرورت تمرکز برنامه‌ریزی شهری بر مناطق پرریسک و اولویت‌بندی اقدامات بازسازی و نوسازی در این مناطق است. از جنبه مدیریتی، شناسایی ساختمان‌های مستعد تخریب می‌تواند به تخمین ضایعات ساختمانی با دقت بالا و مدیریت بهینه آن‌ها کمک کند. این امر نه‌تنها منجر به کاهش هزینه‌های اقتصادی و آسیب‌های زیست‌محیطی می‌شود، بلکه به ایجاد الگوهای پایدارتر در مدیریت شهری نیز کمک می‌کند. نتایج این مطالعه می‌تواند به‌عنوان مرجعی برای سیاست‌گذاران و محققان در توسعه مدل‌های پیشرفته‌تر برای مدیریت پایدار شهری و کاهش اثرات زیست‌محیطی به‌کار گرفته شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification effective factors on demolition of residential buildings from owners’ perspective (Case study: District 2 of Tabriz Metropolitan)

نویسندگان [English]

  • Mohsen Babaei
  • Mohammad Pordel

Civil Engineering Department, Faculty of Engineering, Bu-Ali Sina university, Hamedan, Iran

چکیده [English]

Demolition of residential buildings is one of the primary contributors to construction waste, significantly impacting the environment and accounting for a substantial portion of total construction waste. In this context, identifying and analyzing the factors influencing owners' decisions regarding building demolition can improve the estimation of construction waste and, ultimately, aid in better management of such waste. A review of previous studies reveals that both latent and explicit variables play a role in property owners' preferences for either demolishing or retaining their buildings. This study aims to identify and analyze the factors driving property owners to demolish residential buildings. The primary objective of the research is to determine the key factors influencing owners' decisions to demolish residential properties. To achieve this, the study employed multiple linear regression (MLR), analyzing data gathered through structured questionnaires distributed among property owners. The collected data were processed using SPSS statistical software to examine the relationships between various factors and owners' preferences. The findings indicated that factors such as the neighborhood fabric, average property value in the area, property size, building age, adjusted road width, and the number of existing floors significantly impact owners' decisions to demolish their properties. Statistical analysis demonstrated that all identified factors, except the number of existing floors, showed a significance level of 0.0001 in influencing demolition decisions. Among these, building age and neighborhood type had the most pronounced effect on owners' decisions. By identifying the factors influencing demolition decisions, it is possible to pinpoint buildings at risk of demolition and accurately estimate the volume of construction waste generated using established waste production rates.

کلیدواژه‌ها [English]

  • Demolition waste
  • Stated Preference (SP)
  • Residential buildings
  • Urban environment

تخریب ساختمان‌های مسکونی یکی از عوامل اصلی تولید ضایعات ساختمانی است که تأثیرات قابل توجهی بر محیط‌زیست دارد و سهم قابل توجهی از کل ضایعات ساختمانی در بر می‌گیرد. در این راستا، شناسایی و تحلیل عوامل مؤثر بر تصمیمات مالکان در خصوص تخریب ساختمان‌ها می‌تواند به بهبود تخمین ضایعات ساختمانی و در گام فراتر در مدیریت ضایعات ساختمانی مفید باشد. با بررسی مطالعات پیشین می‌توان دریافت که متغیرهای پنهان و آشکار متعددی در ترجیحات مالکان مبنی بر اقدام به تخریب یا عدم تخریب ساختمان دخیل است. در این پژوهش سعی بر این است تا عواملی که مالکان را به تخریب ساختمان‌های مسکونی سوق می‌دهد، شناسایی و تحلیل شود. هدف اصلی این پژوهش، شناسایی عوامل مؤثر در تصمیم‌گیری مالکان برای تخریب ساختمان‌های مسکونی است. برای این منظور، از رگرسیون خطی چندگانه (MLR) استفاده شده و داده‌های مربوط به ترجیحات مالکان از طریق پرسش‌نامه‌های جمع‌آوری شده است. داده‌ها در نرم‌افزار آماری SPSS مورد تحلیل قرار گرفتند تا ارتباطات میان عوامل مختلف با ترجیحات مالکان شناسایی شوند. نتایج نشان داد که عواملی نظیر بافت منطقه ملک، میانگین ارزش منطقه ملک، متراژ ملک، سن بنا، عرض‌گذر اصلاحی و تعداد طبقات موجود ملک می‌توانند تاثیر مستقیم را در تصمیم مالکان مبنی بر تخریب ساختمان خود القا کنند، و همه این عوامل شناسایی‌شده به غیر از عامل تعداد طبقات موجود ملک، در سطح معناداری 0001/0 بر ترجیحات مالکان در خصوص تخریب ساختمان‌ها موثر هستند. به‌طور خاص، سن بنا و نوع بافت منطقه بیشترین تأثیر را در تصمیمات مالکان به تخریب داشته‌اند.

امیدی فریدون؛ و میاحی محمد امین. (1403). طراحی مدل مدیریت پسماند شهری مبتنی بر فناوری های نوین(مورد مطالعه: شهرستان دزفول). فضای شهری و حیات اجتماعی، 3(9): 30–46.
رضایی محمد رضا؛ قاسمی مسلم؛ و رستم زاده, میترا. (1402). تحلیل فضایی کاربری ها در مناطق شهری ( مطالعه موردی: منطقه تاریخی شهر یزد). فضای شهری و حیات اجتماعی, 2(4): 1–20.
شرقی محمود رضا؛ حیدری چیانه رحیم؛ و روستایی, شهریور. (1402). بررسی و تحلیل نگرش شهروندان نسبت به توسعه گردشگری شهری (نمونه موردی: کلانشهر تبریز). فضای شهری و حیات اجتماعی, 2(7): 75–94.
طالبی محمد صادق. (1402). مکان یابی محل دفن پسماند شهراردکان با استفاده از مدل سازی تصمیم گیری چند معیاره در محیط GIS. فضای شهری و حیات اجتماعی, 2(4): 37–55.
Omidi, F, & Miyahi, M. (2024). Designing an Urban Waste Management Model Based on Modern Technologies (Case Study: Dezful County). Urban Space and Social Life, 3(9), 30–46. [In Persian]
Rezaei, M, Ghasemi, M, & Rostamzadeh, M. (2023). Spatial Analysis of Urban Land Uses (Case Study: Historical Area of Yazd City). Urban Space and Social Life, 2(4), 1–20. [In Persian]
Sharghi, M, Heidari Chiane, R, & Roustaei, S. (2023). Examining and Analyzing Citizens’ Attitudes toward Urban Tourism Development (Case Study: Tabriz Metropolis). Urban Space and Social Life, 2(7), 75–94. [In Persian]
Talebi, M. (2023). Landfill Site Selection for Ardakan City Using Multi-Criteria Decision-Making Modeling in a GIS Environment. Urban Space and Social Life, 2(4), 37–55. [In Persian]
Abbasi, M., & El Hanandeh, A. (2016). Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Management, 56, 13–22. https://doi.org/10.1016/J.WASMAN.2016.05.018
Aiken, L. S., West, S. G., & Pitts, S. C. (2003). Multiple Linear Regression. In Handbook of Psychology (pp. 481–507). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471264385.wei0219
Akanbi, L. A., Oyedele, A. O., Oyedele, L. O., & Salami, R. O. (2020). Deep learning model for Demolition Waste Prediction in a circular economy. Journal of Cleaner Production, 274, 122843. https://doi.org/10.1016/J.JCLEPRO.2020.122843
Andersen, E. B. (1973). A goodness of fit test for the rasch model. Psychometrika, 38(1), 123–140. https://doi.org/10.1007/BF02291180
Bryman, A., & Cramer, D. (2004). Quantitative Data Analysis with SPSS 12 and 13. In Quantitative Data Analysis with SPSS 12 and 13. https://doi.org/10.4324/9780203498187
Colin Cameron, A., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342. https://doi.org/10.1016/S0304-4076(96)01818-0
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Datta, S. D., Rana, M. J., Assafi, M. N., Mim, N. J., & Ahmed, S. (2022). Investigation on the generation of construction wastes in Bangladesh.  https://doi.org/10.1080/15623599.2022.2050977
Ding, T., & Xiao, J. (2014). Estimation of building-related construction and demolition waste in Shanghai. Waste Management, 34(11), 2327–2334. https://doi.org/10.1016/j.wasman.2014.07.029
Ghanbari, M. (2022). Dynamic Analysis of Construction and Demolition Waste Management System (A Case Study of Tehran, Iran). Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/9348027
Hensher, D. A., Rose, J. M., & Greene, W. H. (2015). Applied choice analysis. In Applied Choice Analysis. Cambridge University Press. https://doi.org/10.1007/9781316136232
Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36–44. https://doi.org/10.1016/J.RESCONREC.2017.09.029
Hwang, B. G., & Yeo, Z. B. (2011). Perception on benefits of construction waste management in the Singapore construction industry. Engineering, Construction and Architectural Management, 18(4), 394–406. https://doi.org/10.1108/09699981111145835
Islam, R., Nazifa, T. H., Yuniarto, A., Shanawaz Uddin, A. S. M., Salmiati, S., & Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, 10–21. https://doi.org/10.1016/j.wasman.2019.05.049
Jin, R., Yuan, H., & Chen, Q. (2019). Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling, 140, 175–188. https://doi.org/10.1016/j.resconrec.2018.09.029
Kamma, R. C., & Jha, K. N. (2022). Quantifying Building Construction and Demolition Waste Using Permit Data. Journal of Construction Engineering and Management, 148(9). https://doi.org/10.1061/(ASCE)CO.1943-7862.0002357
Kartam, N., Al-Mutairi, N., Al-Ghusain, I., & Al-Humoud, J. (2004). Environmental management of construction and demolition waste in Kuwait. Waste Management, 24(10), 1049–1059. https://doi.org/10.1016/j.wasman.2004.06.003
Li, J., Ding, Z., Mi, X., & Wang, J. (2013). A model for estimating construction waste generation index for building project in China. Resources, Conservation and Recycling, 74, 20–26. https://doi.org/10.1016/j.resconrec.2013.02.015
Louviere, J. J., Hensher, D. A., Swait, J. D., & Adamowicz, W. (2000). Stated Choice Methods. In Stated Choice Methods. Cambridge University Press. https://doi.org/10.1017/cbo9780511753831
Louviere, J. J., Hensher, D. A., Swait, J. D., & Adamowicz, W. (2010). Stated Choice Methods: Analysis and Applications. In Stated Choice Methods (Issue May 2014). https://doi.org/10.1017/CBO9780511753831.008
Lu, W., Lou, J., Webster, C., Xue, F., Bao, Z., & Chi, B. (2021). Estimating construction waste generation in the Greater Bay Area, China using machine learning. Waste Management, 134, 78–88. https://doi.org/10.1016/j.wasman.2021.08.012
Ma, Z., Hu, R., Shen, J., Wang, C., & Wu, H. (2023). Chloride diffusion and binding capacity of sustainable cementitious materials with construction waste powder as cement replacement. Construction and Building Materials, 368, 130352. https://doi.org/10.1016/j.conbuildmat.2023.130352
Marill, K. A. (2004). Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression. Academic Emergency Medicine, 11(1), 94–102. https://doi.org/10.1197/j.aem.2003.09.006
Minitab. (2010). In Wiley Interdisciplinary Reviews: Computational Statistics (Vol. 2, Issue 6, pp. 723–727). John Wiley & Sons, Ltd. https://doi.org/10.1002/wics.113
Paulauskaite-Taraseviciene, A., Raudonis, V., & Sutiene, K. (2022). Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 140, 31–39. https://doi.org/10.1016/j.wasman.2022.01.004
Ram, V. G., & Kalidindi, S. N. (2017). Estimation of construction and demolition waste using waste generation rates in Chennai, India. Waste Management and Research, 35(6), 610–617. https://doi.org/10.1177/0734242X17693297
Shafiei, I., Eshtehardian, E., & Azizi, M. (2021). Management of waste generated by construction and demolish in construction industry projects using the dynamics of systems approach. Journal of Structural and Construction Engineering, 8(4), 164–184. https://doi.org/10.22065/JSCE.2019.190757.1886
Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027
Omidi, F., & Miyahi M.A. (1403). Designing urban waste management model based on modern technologies (case study: Dezful city). Urban space and social life, 3(9), 41-55. (in persian) https://doi.org/10.22034/jprd.2024.60916.1092
Rezai, M.R., Ghasem, M., & Rostamzadeh, M. (1402). Spatial analysis of uses in urban areas (case study: historical area of ​​Yazd city). Urban space and social life, 2(4), 1-20. (in persian) https://doi.org/10.22034/jprd.2023.16425